Планета бактерий

Фото: Михаил Синицын
// Константин Северинов: чему мы можем научиться у господствующей на Земле формы жизни
Андрей Константинов

Окруженные со всех сторон бактериями, мы сидим в кафе Сколтеха, подкармливаем кофе с пирожными бактерий, проживающих в нашем теле, и говорим о бактериях, с каждым сказанным словом вдыхая и выдыхая их. Константин Северинов — один из тех ученых, кто, добившись международной известности, вернулся делать науку в Россию. Выпускник биофака МГУ, сейчас он заведует лабораториями в Институте биологии гена РАН и в Институте молекулярной генетики РАН, является профессором Сколковского института науки и технологий и профессором Университета Ратгерса (США). Впрочем, для нас главное — что он изучает этих маленьких невидимых существ, которые первыми заселили Землю​.

— Мне интересно, чтоб было интересно, — пожимает плечами Северинов. — Интересы, конечно, меняются, но я решил заняться биологией лет в шесть-семь и с тех пор не жалею. Я точно знаю, что мне неинтересно: делать полезные вещи ради пользы.

Кстати, я абсолютно убежден, что самые полезные приложения в биомедицине возникают не потому, что вы, например, решили победить рак и будете с ним бороться. Наука не боксерский матч. Отгадка, как правило, находится вовсе не там, где ее ищут.

Сейчас мне интересней всего, как происходит экспрессия генов, — как на молекулярном уровне принимается решение, чтобы ген начал или остановил свою работу. Эти процессы универсальны, понять их очень важно — они лежат в основе развития организма или заболеваний, таких как рак. А еще мне интересна экология микробов, взаимодействие микробов и вирусов друг с другом и с высшими организмами. Ведь основная форма жизни на Земле — это микробы. Она не только самая древняя, но и самая разнообразная, хоть мы и считаем себя венцом творения, самыми важными обитателями Земли. В реальности это, конечно, не так.

Главные жители Земли

[Кот Шрёдингера] Да ведь это мы — многоклеточные, такие разнообразные и непохожие друг на друга! А микробы хоть и существуют на миллиарды лет дольше, не слишком отличаются друг от друга, по крайней мере для неспециалиста.

[КС] Всё ровно наоборот: это мы очень скучные и одинаковы, а они очень даже разные! Критерий разнообразия — не ручки-ножки или цвет глаз, а разнообразие генетическое. Ведь всё живое — это просто генетический текст, послание, закодированное в виде последовательностей нуклеотидов ДНК. Оценить разнообразие жизни можно просто сравнив эти тексты. Точно так же можно оценить, например, разнообразие группы восточнославянских языков, сравнив русский, украинский и белорусский и подсчитав, сколько различий они накопили.

Бактерии — микроорганизмы, клетки которых не содержат ядра (прокариоты). Еще прокариотами являются археи, но их куда меньше. На сегодня описано около 10 тысяч видов бактерий, но предполагается, что их свыше миллиона. Впрочем, понятие «вид» у бактерий довольно условное.

Биоинформатика — очень модная наука. Она изучает, как передается и обрабатывается информация в живых клетках и между ними. В узком смысле — математические методы анализа геномов, позволяющие сравнивать их.

Геном — записанная с помощью ДНК наследственная информация, копия которой содержится в каждой клетке организма. Работу генома как организованного целого изучает геномика.

Представьте себе универсальное древо жизни — огромное дерево, на котором каждая веточка — это некий генетический текст, соответствующий какому-либо организму. Это дерево очень большое, и происходим мы из одного корня: вся жизнь возникла на планете единожды. Точнее, вся современная жизнь. Так вот, на этом очень разлапистом, ветвистом дереве все человечки, животные, растения и рептилии — это лишь одна небольшая веточка, а все остальные очень разные ветви — как раз микробы. Они для нас однообразны, потому что мы их не видим. Но с молекулярной точки зрения они составляют 90–95% разнообразия жизни на планете.

[КШ] Как это генетическое разнообразие проявляется в жизни микробов?

[КС] Я недавно готовил конференцию под названием «Экстремофилы», и мы общались с шефом департамента науки в Минобре. Так он сначала думал, что экстремофилы — это люди, которые катаются на горных лыжах вне подготовленных трасс. Экстремофилы — это и правда любители экстремальных условий, но только микробы. Условия жизни на планете очень разнообразны: от вечной мерзлоты до горячих источников, в которых может быть 110–120 градусов, а те из них, что на дне океана, находятся еще и под гигантским давлением. Есть места с безумной концентрацией соли, как Мёртвое море. Или с огромным количеством кислоты. И везде кипит жизнь, но единственные, кто там живет, — те самые микробы-экстремофилы. Происходит это потому, что они обладают удивительной генетической изменчивостью и адаптивностью. И в земле они есть, и в стратосфере. Вся планета, в духе учения Вернадского, живая.

[КШ] Вот тут, вокруг нас, воздух весь ими заполнен?

[КС] Что значит «заполнен»? Вон микроб пролетел, видите? Да, их много: в кубическом метре воздуха микробов примерно столько, сколько людей в Москве. А в кубическом сантиметре снега в Антарктиде от 10 до100 бактериальных клеток. Они могут не жить активно, а просто сидеть, словно пассажиры, и ждать, когда какой-нибудь айсберг отвалится и увезет их в Африку.

Фото: Фотобанк Лори

Как эволюционируют микробы

[КШ] Бактерии эволюционируют быстрее других существ?

[КС] Просто они быстро делятся, и их очень много. Они словно самим господом богом созданы для эффективного естественного отбора. Кишечная палочка делится за 15 минут. Если вы посадили одну бактерию кишечной палочки в чашку, то через 8 часов обнаружите колонию ее потомков размером с булавочную головку — в ней будет 10 миллионов бактерий, это опять-таки — столько, сколько человек живет в Москве.

Чтобы попытаться выработать у москвичей устойчивость к радиации, придется взорвать над столицей атомную бомбу и ждать потомства от выживших. С бактериями всё гораздо проще — вырастили колонию за 8 часов, облучили ее, и вот уже можно изучать потомство наиболее жизнестойких особей. С ними удобно работать! Быстрее ли они эволюционируют? Нет, просто быстрее размножаются.

Горизонтальный перенос генов — передача генетического материала другому организму, не являющемуся потомком. 

Митохондрия — органелла (орган клетки) размером с бактерию, запасающая и высвобождающая по мере надобности энергию. У нее есть свой геном. Считается, что митохондрии — это бывшие бактерии, которые внедрились в клетки более продвинутых организмов.

Ретровирусы — вирусы, генетическая информация которых содержится в на молекуле РНК. После проникновения ретровируса в клетку его РНК переписывается в ДНК, которая транспортируется в ядро и встраивается в ДНК клетки. Самый известный представитель — ВИЧ.

[КШ] У них, кажется, есть специальный механизм, позволяющий обмениваться генами разным видам бактерий?

[КС] Есть, действительно. Генетика дарвинизма предполагала только вертикальную передачу признаков — по наследству. Всё древо жизни казалось такой ветвящейся структурой, растущей из одного корня и постепенно усложняющейся. Наверху, конечно же, всегда был человек. Предполагалось, что у каждого вида своя эволюционная траектория, идущая от общего корня, и эти траектории не пересекаются.

Но у бактерий широко распространен горизонтальный перенос генов, когда один вид обменивается генами с другим. Вот представьте себе: пошли вы в зоопарк, увидели слона — вам понравился его хобот, вы обменялись со слоном соответствующими генами и ушли уже с хоботом. Бактерии так делают часто — для одноклеточных это просто. И получается, что ветви на эволюционном древе не изолированы, а образуют сеть.

[КШ] Обмен генами случаен или бактериям действительно может понравиться чужой «хобот»?

[КС] Случаен, никто ничего не выбирает. Допустим, сидят себе бактерии, и тут вдруг становится очень плохо — среда изменилась. Большинство бактерий умирает, и вся их ДНК вытекает наружу. А некоторые выживают и встраивают в себя части этой ДНК. Большинству это ничего не дает, а кто-то получает новые возможности — он растет, и ему становится совсем хорошо, потому что все вокруг погибли: еды куча, никто не мешает.

Фото: Microbe World/flickr.com

[КШ] У людей довольно большая часть ДНК вирусного происхождения. Значит, тут тоже речь идет о горизонтальном переносе. Возможен ли перенос генов от бактерий к людям?

[КС] Нет, у нас с бактериями разные вирусы. У нас нет бактериальных генов, кроме тех, что мы когда-то получили от бактерий, ставших митохондриями в клетках нашего организма. Помните, как возникли клетки, от которых произошли мы и все, кого мы видим в зоопарке? Наш одноклеточный предок захватил некую древнюю бактерию и заставил ее кашу варить — энергию вырабатывать. Но чтобы эта бактерия не прибила нашего предка, большинство генов из нее было перенесено в ядро.

А гены вирусов, про которые вы говорите, действительно составляют у нас солидную часть генома. Это остатки ретровирусов, которые встроились в разные места нашей ДНК. Они встроились так, чтобы мешать работе наших генов, но испортились потихонечку. Некоторые из них, правда, еще могут прыгать по ДНК, и когда они прыгают, то могут возникать неприятные вещи типа рака. Кстати, интересно, что мы довольно сильно отличаемся от обезьян по «вирусному геному», а те 30 тысяч генов, которые кодируют белки, отличаются от обезьяньих гораздо меньше.

1676 год

Это год, когда человек впервые увидел бактерии. Это был голландский натуралист Антони ван Левенгук, усовершенствовавший микроскоп. Как и всех прочих микроскопических существ, он назвал их «анималькули». 

[КШ] Способны ли бактерии наследовать приобретенные признаки?

[КС] Несколько назад опыты показали, что таки да, у бактерий может быть так называемая ламарковская наследственность, связанная с горизонтальным переносом генов. Например, у бактерий открыли некую новую иммунную систему. У людей, которые занимаются оптимизацией штаммов для молочной промышленности, есть большая проблема: вирусы убивают ферментацию, и миллиарды долларов теряются из-за испорченного молока. Если вирус заражает бактерию, все бактерии дохнут, но иногда возникают бактерии, устойчивые к вирусу. Почему?

Оказалось, вовсе не потому, что в популяции изначально были резистентные  бактерии. Механизм возникновения устойчивости обнаружился такой: небольшой кусочек ДНК вируса попадает в геном бактерии и делает ее устойчивой к вирусу. Этот захваченный фрагмент ДНК, примеряется к заходящему вирусу, и если обнаруживается полное соответствие, бактерия вирус убивает. Это как память, которая передается по наследству. Но такая иммунная система не очень эффективна: она работает только при условии, что чужеродная ДНК точно соответствует захваченному куску. Даже одно различие не позволит убить вирус.

Но с точки зрения генных инженеров и ученых, которые хотят лечить всякие генные болезни, этому механизму цены нет — на его основе совсем недавно был создан метод редактирования генома CRISPR, который сейчас не использует только ленивый. Я думаю, первое действительно эффективное лекарство от рака возникнет именно благодаря этой технологии. Есть, например, больной с лейкемией, у него в ДНК изменена лишь одна буква из трех миллиардов. До недавних пор не было технологии, позволяющей найти и изменить единственную опечатку. А эта система способна гарантированно узнать неправильную копию и уничтожить ее. То есть бактериальную иммунную систему фактически научились инсталлировать в человеческую клетку, и она работает как часы. Теперь мы можем заменить любую букву в нашем генетическом коде.

Фото: Microbe World/flickr.com

[КШ] Скоро ли методы редактирования генома позволят нам самим создавать полезных микробов?

[КС] Молекулярная инженерия существует давно — с 1973 года, и изменить бактерию не такая сложная задача. У моих студентов в Сколтехе завтра начинается практикум: они все будут это делать. Но что получится, мы не знаем. Предсказать, как изменение гена или внесение дополнительного гена повлияет на конечный результат, мы пока не можем.

Сейчас в моду входит системная биология, которая пытается предсказать последствия генетических изменений в организме, пытается конструировать какие-то новые генетические сети с требуемыми свойствами. Чтобы кишечная палочка, например, ела нефть, ей нужно ввести некий комплекс генов, который, по мнению исследователей, связан со способностью перерабатывать нефть. Эта задачу очень трудно решить — мы слишком мало знаем. Изменить ген легко, но, скорее всего, то, что получится, не будет работать: вы просто испортите генетический механизм, и палочка умрет либо станет кривая или косая.

Зоопарк внутри человека

[КШ] Если они так хорошо приспосабливаются, не обречены ли мы на проигрыш в гонке вооружений с микробами? Рано или поздно появится смертельная инфекция, с которой невозможно будет справиться…

[КС] Эти страхи возникли еще в XIX веке с подачи Пастера, когда вдруг выяснилось, что мы находимся в состоянии войны с коварным противником — микробами. Но реальная ситуация совершенно не такая. Большинство микробов о нас знать не знают, они занимаются своими делами, и мы им глубоко безразличны. Идея, что микробы — это что-то очень плохое, посланное богом за наши прегрешения, совершенно неверна. Мы зависим от микробов гораздо больше, чем они от нас. Наше тело состоит из триллиона клеток — потомков единственной оплодотворенной яйцеклетки. При этом внутри нашего организма находится 10 триллионов бактериальных клеток! Большая часть из них живет в кишечнике и составляет огромный орган, который сейчас называют микробиом.

Обычно говорят, что самый крупный орган человека — печень: она весит больше мозга. Но на самом деле это, конечно, микробиом. Он выполняет массу совершенно необходимых для нас функций. Например, наши клетки вдруг потеряли возможность производить ряд витаминов, необходимых для жизни. Мы можем себе это позволить, потому что в нас живут бактерии, которые производят эти витамины. Они вносят огромный вклад и в работу иммунной системы, защищая нас от вредных бактерий, которых абсолютное меньшинство.

Метагеном — совокупный геном сообщества организмов, живущих вместе. Недавно, например, китайские ученые прочитали метагеном микробов, обнаруженных в смоге Пекина. Их там оказалось очень много, больше тысячи.

Микробиом человека — сообщество бактерий, живущих в нашем кишечнике. Мы никогда не будем одиноки!

Секвенирование — определение последовательности нуклеотидов, из которых состоит ДНК, то есть прочтение генетического кода.

[КШ] Бактерии, которые внутри нас живут, хорошо изучены?

[КС] Ученые совсем недавно поняли всю степень их разнообразия, что у нас внутри целый зоопарк, огромная «темная материя» микробов. Раньше микробиологи изучали только те бактерии, которые им удавалось вырастить в чашке Петри. Но подавляющее их большинство — 99,99% — просто не хотят на наших чашках расти, им не нравится питательная среда, которую мы им предлагаем. А современные методы геномного секвенирования позволяют читать геномы даже бактерий, культивировать которые не получается.

Вот вы можете походить по комнате с пылесосом и засосать воздух, а потом с помощью современных машинок выделить из пыли все ДНК и определить так называемый метагеном комнаты. Метагеном — это набор генов всех организмов, которые присутствовали в анализируемом образце. И в нем вы обнаружите огромное количество генетических следов разнообразных неизвестных бактерий. Если речь идет о метагеноме кишечника, то вы можете найти корреляции между какими-то кусками этих генетических текстов и какими-то свойствами человека — например, продолжительностью его жизни или какими-то патологиями.

Фото: Михаил Синицын

[КШ] Метагеном каждого человека уникален?

[КС] Человек несет в себе уникальный набор микробов, внутри семьи они обычно похожи. Это важно для диагностики и персональной медицины ближайшего будущего, например для разработки правильной диеты. Диета оказывает огромное влияние на что угодно. Но когда я ем шоколадку, мои клетки получают не какао, сахар и масло, а продукты их глубокого разложения живущими в моем пищеварительном тракте бактериями. Есть такая замечательная вещь, как пересаживание кала, — этот метод в США прошел клиническое испытание на людях и уже используется. Оказывается, лучший способ похудеть — это пересадить себе какашку худого человека, которая, как известно, в основном состоит из его бактерий.

В дальнейшем можно будет на своей странице в соцсетях выставлять не только геном, но и метагеном. И если какой-нибудь Цукерберг или Брин будут иметь доступ к этой информации, они смогут проводить исследования, например, о связи определенной бактерии с желанием, я не знаю, купить айфон. А медики, скажем, выяснят, что все, кто ел огурцы и имел такую-то бактерию, рано умерли. То есть бактерии могут служить диагностическими маркерами заболеваний или какого-то поведения.

0,75 мм

Таков размер самой крупной бактерии Thiomargarita namibiensis. Большинство же бактерий имеют размер 0,5–5 мкм. 

[КШ] Сейчас что можно сказать о человеке, проанализировав его метагеном?

[КС] Да почти ничего. Кстати, проанализировав геном, тоже почти ничего пока нельзя сказать. К сожалению, это сложно. Любой человек с точки зрения геномики — это, в общем, одна и та же книжка. Если вы возьмете «Войну и мир» и увеличите ее в тысячу раз, там будет три миллиарда букв. Каждый из нас — произведение, содержащее три миллиарда букв ДНК, но при этом отличаемся друг от друга лишь на 0,1% этой последовательности — на три миллиона букв. Эти «опечатки» обеспечивают нашу индивидуальность и предрасположенность к болезням. Есть очень простые заболевания, как гемофилия у Романовых, причиной которой служит одна-единственная опечатка. Но на возникновение шизофрении или рака влияют десятки и сотни опечаток — пока вычленить все влияния не представляется возможным. С микробиомом то же самое.

[КШ] А как же антибиотики? Получается, они разрушают всё наше уникальное сообщество бактерий?

[КС] Такое ощущение, что, хотя на короткое время антибиотики резко всё меняют, потом микробиом восстанавливается в прежнем виде. Возможно, это связано с аппендиксом. Некоторые ученые утверждают, что аппендикс — это такой резервуар, маленький домик для нашей микрофлоры.

Фото: Shutterstock

О чем микробы говорят друг с другом

[КШ] Почему разные страшные эпидемии обычно приходят из Африки?

[КС] Думаю, это не совсем правильное утверждение, — уверен, например, что туберкулез не оттуда. В Африке просто разнообразные условия и биоразнообразие очень большое. Это такая гигантская лаборатория, в которой можно обкатывать всякие новые варианты. И одна из причин, почему Африку так тяжело было завоевать или покорить. Европейская цивилизация развивалась в схожих климатических условиях. А когда вы движетесь с севера на юг, возникают новые климатические зоны с новыми микробами. То же самое в вытянутой с севера на юг Америке: майя, инки, ацтеки почти не общались друг с другом, потому что не могли пройти этот барьер — в новых природных условиях их убивали непривычные для их организма микробы.

[КШ] Сами бактерии как-то общаются между собой?

[КС] Безусловно, с помощью химических сигналов. Антибиотики ведь не люди изобрели — это вещества, с помощью которых микробы общаются друг с другом. Ученые всегда изучали бактерий в чистой культуре определенного вида, но в природе такого не бывает: у любого места обитания свой микробиом, сообщество разных микробов, где все зависят друг от друга. У них сложные отношения, всё как у людей, хотя конечная цель каждого вида — победить, всё захватить. Но другие бактерии не дают — возникает какой-то баланс.

Самая важная информация для бактерий — это есть ли еда, сколько вокруг других представителей твоего вида и других видов. Определяют они это с помощью механизма, который по-английски называется quorum sensing, — некоторые переводят это как «чувство локтя». В небольшом объеме среды каждая бактерия выпускает наружу какое-то вещество, которое ее собратья могут почувствовать. Если бактерий много, то и вещества будет много — они поймут, что здесь тесно и, вместо того чтобы размножаться как бешеные, образуют споры или биопленку. Так, например, происходит в легких больного муковисцидозом — микробы говорят другу: «Нам здесь стало очень тесно» и образуют пленки, а больной при этом умирает. Для таких сообщений им и нужны антибиотики.

Фото: Andrii Muzyka/Shutterstock

[КШ] То есть антибиотик — это сигнал типа «убей себя», а не какой-то яд, который, допустим, мембраны разрушает?

[КС] Да, антибиотик — это информация, сигнальная молекула, которая изменяет экспрессию генов. В природе антибиотики, как правило, не достигают такой концентрации, при которой убивают. А поскольку антибиотики были изобретены бактериями для общения между собой, то и гены устойчивости к антибиотикам возникли давным-давно, задолго до всяких врачей. Именно поэтому победить устойчивость к антибиотикам всё равно никогда не удастся. Гены устойчивости появились не потому, что злые бактерии вдруг решили наступить на горло нашей песне. Если вы возьмете образцы бактериальной ДНК из скважины, пробуренной в вечной мерзлоте, то, конечно, найдете гены устойчивости ко всем антибиотикам. Ведь бактерия, которая их производит, по определению к ним устойчива, то есть сама является источником антигенов.

Война с микробами: антибиотики и бактериофаги

[КШ] Что-то в последние десятилетия ничего не слышно о новых антибиотиках.

[КС] Они не появляются с конца 80-х годов. Во-первых, до недавнего времени антибиотики, которые были, и так работали хорошо. Во-вторых, новые найти очень непросто. Золотой век антибиотиков закончился. Вот я, например, работаю в Институте микробиологии Ваксмана [подразделение Университета Ратгерса — КШ] , а Ваксман — это человек, который получил Нобелевскую премию за стрептомицин, которым изначально лечили туберкулез. Так вот, он отправлял своих друзей и сотрудников по городам и весям за образцами земли, потому что большинство антибиотиков производится почвенными бактериями: их там слишком много живет — вынуждены общаться. В институте, построенном на его Нобелевскую премию, эти почвенные бактерии до сих пор болтаются — работать там невозможно, потому что они всё перезаразили. Крупные фармкомпании тоже собирали образцы почвы по миру и потом из найденных в ней бактерий выделяли антибиотики. Выделяли-выделяли — так возникло большинство антибиотиков, но постепенно новые перестали появляться. Потому что количество культивируемых бактерий невелико.

Для того чтобы выделять новые антибиотики, по-видимому, будет использоваться та самая геномика, которая позволяет смотреть генетическую информацию «темной материи» неизвестных бактерий. Биоинформатика может выделить кластеры генов, которые потенциально могут кодировать антибиотики, потом генные инженеры будут создавать специальные штаммы-продуценты.

Собственно, этим и я занимаюсь — мы делаем предсказания: мол, такая-то бактерия, такие-то гены могут быть ответственны за производство таких-то веществ. Потом мы это вещество должны получить, поймать, охарактеризовать, выявить его структуру, показать, что это вещество действует на клетку, понять, как именно действует, почему оно проходит в клетку, почему убивает клетки и при этом не убивает ту клетку, которая его производит, как вещество делается.

Фото: NOBEASTSOFIERCE/Shutterstock

[КШ] То есть у вас в лаборатории есть претенденты на новые антибиотики?

[КС] У нас есть некоторое количество новых, еще не описанных веществ с интересными функциями. Но мы изучаем их с точки зрения механизмов действия, а не с точки зрения практического применения.

Понимаете, найти какое-то вещество, которое убивает бактерию, несложно, таких веществ десятки тысяч. Проблема в том, что антибиотик не должен вызывать в клетках человека никаких разрушений. Еще вы должны будете доказать, что, если он попадет в кровь, то будет поглощаться и доставляться к источнику инфекции в требуемой концентрации. Он должен быть достаточно стабилен, его нужно произвести в больших количествах, и это должно быть экономически выгодно. С точки зрения промышленного производства всё это гораздо важнее, чем просто найти антибиотик.

~700

Столько разновидностей бактерий живёт у вас во рту (приблизительная оценка). При среднем поцелуе партнеры обмениваются примерно 80 миллионами бактерий. 

[КШ] Так все-таки, не уничтожат нас микробы, пока мы будем решать все эти вопросы? Появляются новые болезни, бактерии быстро приобретают устойчивость к антибиотикам…

[КС] Это, конечно, ужас, но не ужас-ужас-ужас. Прямо сейчас никто не вымирает. Новых болезней немного, а вот масса заболеваний, которые до недавних пор воспринимались как генетические или связанные с какими-либо дефектами, как выясняется, имеют бактериальную природу: от диабета до колитов и даже шизофрении — оказывается, чтобы завелись тараканы в голове, нужны кое-какие бактерии в животе.

[КШ] Сможем ли мы когда-нибудь победить все инфекции, найти средство от всех вредных микробов?

[КС] Нет, излечить всё и вся, конечно же, не получится. Взять те же антибиотики: если они очищают от микробов какую-то нишу, где те спокойно жили, там обязательно заводится кто-нибудь другой. Все-таки жизнь существует уже 3,5 миллиарда лет и научилась приспосабливаться ко всяким разностям. Особенно учитывая, что бактерии постоянно обмениваются своими генами и вирусами. А мы — та среда, в которой происходит их отбор. Когда среда меняется, меняются и они.

Фото: Shutterstock

[КШ] Кроме антибиотиков у нас есть еще одно супероружие — бактериофаги.

[КС] Бактериофаги — это вирусы бактерий, их огромное количество. Бактериям в этом смысле жить гораздо тяжелее, чем нам. Поскольку каждый бактериофаг специфичен к той бактерии, на которой паразитирует, они могут быть эффективнее, чем антибиотики. Бактериофаги открыли лет сто назад, и изначально именно их планировали использовать против бактерий. Но открытие антибиотиков позволило на время забыть про бактериофагов.

Тем не менее в бывших соцстранах бактериофаги широко применялись, потому что, с одной стороны, с антибиотиками у нас были проблемы, а с другой — человек, открывший бактериофаги, Феликс Д’Эрелль, большой любитель путешествий и экзотических женщин, приехал в середине тридцатых готов в Грузию, нашел там всё, что любил, и создал институт бактериофагов. Потом, правда, удрал, говорят, не поделил женщину с каким-то энкавэдэшником. Но институт остался, там же был завод, где делались таблетки, такие заводы и сейчас есть в Нижнем Новгороде и Перми. У советского солдата в личном пакетике всегда была таблетка интестифага. Кстати, большинство войн сегодня  проигрывается, как и во времена Римской империи, не из-за поражений, а из-за поносов.

[КШ] Чем бактериофаги хуже антибиотиков?

[КС] По идее, бактериофаг очень удобен, потому что убивает именно ту бактерию, под которую заточен. Но он сам по себе вызывает иммунный ответ организма. Еще одна проблема — конструирование новых бактерий: бактериофаги часто переносят ДНК от одной бактерии к другой. И масса новых патогенов — это обычные бактерии, которые просто подцепили вирус. Поэтому есть сильное подозрение, что широкое использование бактериофагов могло бы привести к развитию новых опасных патогенов.

Точных ответов никто не знает, слишком мало было надежных исследований. На Западе интерес к этой теме сейчас возрос: например, бактериофагами лечат «ножки Буша», на которых развивается сальмонелла, — опрыскивают их, как спреем, и увеличивают срок годности.

У бактериофагов есть гены, которые позволяют убить клетку. И если вы умеете читать геномы бактериофагов и определять нужные гены, то можете просто применять их как инструмент для выделения генов, продукты которых могут быть использоваться как кандидаты в антибиотики.

 

 

Опубликовано в журнале «Кот Шрёдингера» №4 (06) за апрель 2015 г.

Подписаться на «Кота Шрёдингера»